940 research outputs found

    Electron-electron interaction in carbon nanostructures

    Full text link
    The electron-electron interaction in carbon nanostructures was studied. A new method which allows to determine the electron-electron interaction constant λc\lambda_c from the analysis of quantum correction to the magnetic susceptibility and the magnetoresistance was developed. Three types of carbon materials: arc-produced multiwalled carbon nanotubes (arc-MWNTs), CVD-produced catalytic multiwalled carbon nanotubes (c-MWNTs) and pyrolytic carbon were used for investigation. We found that λc\lambda_c=0.2 for arc-MWNTs (before and after bromination treatment); λc\lambda_c = 0.1 for pyrolytic graphite; λc>\lambda_c > 0 for c-MWNTs. We conclude that the curvature of graphene layers in carbon nanostructures leads to the increase of the electron-electron interaction constant λc\lambda_c.Comment: 12 pages, 18 figures, to be published in the Proceedings of the NATO Advanced Research Workshop on Electron Correlation in New Materials and Nanosystems, NATO Science Series II, Springer, 200

    Sensitivity of Volume-regulated Anion Current to Cholesterol Structural Analogues

    Get PDF
    Depletion of membrane cholesterol and substitution of endogenous cholesterol with its structural analogues was used to analyze the mechanism by which cholesterol regulates volume-regulated anion current (VRAC) in endothelial cells. Depletion of membrane cholesterol enhanced the development of VRAC activated in a swelling-independent way by dialyzing the cells either with GTPγS or with low ionic strength solution. Using MβCD–sterol complexes, 50–80% of endogenous cholesterol was substituted with a specific analogue, as verified by gas-liquid chromatography. The effects of cholesterol depletion were reversed by the substitution of endogenous cholesterol with its chiral analogue, epicholesterol, or with a plant sterol, β-sitosterol, two analogues that mimic the effect of cholesterol on the physical properties of the membrane bilayer. Alternatively, when cholesterol was substituted with coprostanol that has only minimal effect on the membrane physical properties it resulted in VRAC enhancement, similar to cholesterol depletion. In summary, our data show that these channels do not discriminate between the two chiral analogues of cholesterol, as well as between the two cholesterols and β-sitosterol, but discriminate between cholesterol and coprostanol. These observations suggest that endothelial VRAC is regulated by the physical properties of the membrane

    Modulation of Endothelial Inward-Rectifier K+ Current by Optical Isomers of Cholesterol

    Get PDF
    Membrane potential of aortic endothelial cells under resting conditions is dominated by inward-rectifier K+ channels belonging to the Kir 2 family. Regulation of endothelial Kir by membrane cholesterol was studied in bovine aortic endothelial cells by altering the sterol composition of the cell membrane. Our results show that enriching the cells with cholesterol decreases the Kir current density, whereas depleting the cells of cholesterol increases the density of the current. The dependence of the Kir current density on the level of cellular cholesterol fits a sigmoid curve with the highest sensitivity of the Kir current at normal physiological levels of cholesterol. To investigate the mechanism of Kir regulation by cholesterol, endogenous cholesterol was substituted by its optical isomer, epicholesterol. Substitution of ~50% of cholesterol by epicholesterol results in an early and significant increase in the Kir current density. Furthermore, substitution of cholesterol by epicholesterol has a stronger facilitative effect on the current than cholesterol depletion. Neither single channel properties nor membrane capacitance were significantly affected by the changes in the membrane sterol composition. These results suggest that 1) cholesterol modulates cellular K+ conductance by changing the number of the active channels and 2) that specific cholesterol-protein interactions are critical for the regulation of endothelial Kir
    corecore